An Efficient Algorithm for Approximate Betweenness Centrality Computation
نویسندگان
چکیده
منابع مشابه
Efficient Approximate Computation of Betweenness Centrality
Betweenness Centrality (BC) is a powerful metric for identifying central nodes in complex network analysis, but its computation in large and dynamic systems is costly. Most of the previous approximations for computing BC are either restricted to only one type of networks, or are too computationally inefficient to be applied to large or dynamically changing networks. We explore two approximative...
متن کاملFast algorithm for successive computation of group betweenness centrality.
In this paper, we propose a method for rapid computation of group betweenness centrality whose running time (after preprocessing) does not depend on network size. The calculation of group betweenness centrality is computationally demanding and, therefore, it is not suitable for applications that compute the centrality of many groups in order to identify new properties. Our method is based on th...
متن کاملTowards Improving Brandes' Algorithm for Betweenness Centrality
Betweenness centrality, measuring how many shortest paths pass through a vertex, is one of the most important network analysis concepts for assessing the (relative) importance of a vertex. The famous state-of-art algorithm of Brandes [2001] computes the betweenness centrality of all vertices in O(mn) worst-case time on an n-vertex and m-edge graph. In practical follow-up work, significant empir...
متن کاملA Faster Algorithm for Betweenness Centrality
The betweenness centrality index is essential in the analysis of social networks, but costly to compute. Currently, the fastest known algorithms require Θ(n) time and Θ(n) space, where n is the number of actors in the network. Motivated by the fast-growing need to compute centrality indices on large, yet very sparse, networks, new algorithms for betweenness are introduced in this paper. They re...
متن کاملEfficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs
Graphs (networks) are an important tool to model data in different domains, including social networks, bioinformatics and the world wide web. Most of the networks formed in these domains are directed graphs, where all the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Computer Journal
سال: 2014
ISSN: 0010-4620,1460-2067
DOI: 10.1093/comjnl/bxu003